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ABSTRACT

The thermal convection equations for a thin layer of

fluid are solvéd numerically as an initial value problem.

The calculations include only those nonlinear terms which

have the form of an interaction of a fluctuation in the velocity
and temperature with the mean temperature field. 1In the present
calculations, the velocity and temperature fluctuations have one
horizontal wave number, and satisfy free boundary conditions

on two conducting horizonﬁal surfaces.

The computed steady state veiocity and temperature
amplitudes show many of the observed qualitative reatu: es.
In particular, the experimentaily observed ~uadary 1ayeri69
of the mean temperature field is correctly . proc.ced. and, av

large Rayleigh number, the total heat transportc .: Jouaa to e

'proportional to the cube root of the Rayleigh aumber _.rovided

the fluctuating temperature and velocity amp..tudzs nave thax

horizontal wave number which maximizes the totél aez. transpo:.

However, the heat transport found anere for .ree bcurndaries is

ab>ut three times the experimental value for .. d boundaries.

4
/

Th: mean temperature gradient can become z- a  .& near the
boundaries for large Rayleigh numbers anc .ai ~ . horiz._ntal

scale motions.
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The linear stability of the system is also investigated,
ard it is concluded that the stable solutions for all Rayleigh
nusbers investigated (R £ 106) have horizontal wave numbers
which very nearly maximize the total heat transport.

Twe stability study also indicates regions in which two or

more horizontal wave numbers are required to support convection.




I. Introduction

" This paper describes the resulis of a numerical investigation
' of the thermal convection equations for a thin layer of fluid
confined between two plates on which free botndary conditions

are employed. Our theoretical procedure 1is to include only those
nonlinear terms which describe the interaction of the mean
temperature with velocity and temperature fiuctuations. That

is, those terms responsible for eddy viscosity and eddy
conductivity effects on the turbulence itself are omitted. The
above eddy terms (hereafter referred to as fluctuating self-r
interactions) are discarded in a physically consistent manner,

so that no unrealistic behévior results from thelr omission.

The motivation for this research is to discover quantitatively

to what extent the turbulent convection problem can be comprehended

- without the fluctuating self-interactions. The system of equations

? obtained by deleting these terms corresponds to closing the
hierarchy of moment equations at the first nontrivial level by
 discarding third order cumulants. The resulting system of
equations is complete and involves no empiricalvparameters.
Moreover, the gross energetics of the flow are preserved.

The method of numerical solution consists in integrating the
Q;Fourier amplitudes of the velocity and temperature fields forward
-in time until the steady state is achieved. This procedure has
the advantage of assuring the stability of the final state provided

a sufficient range of initial data is sampled. The present

1
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¢ ; “+  calculations, carried out on the IBM 7090, contain one horizontal wavei;'

number and enough vertical wave numbers to ensure the elimination of
truncation errors. In the numerical analysis, we have set the Prandtl -

rnunber equal to unity. However, inspection of the equations which omit

the fluctuating self-interactions shows that the heat transport is not
a function of Prandtl number, if the system 1is steady.l
The calculated velocity and temperature fields show many of the

qualitative features of the experimentally determined fields. In par-

ticular, at large Rayleigh number, R, the total heat transport is found

; fﬁf . to e proportional to Rl/3, provided the velocity and temperature fluc-

PREPNES ST}
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‘tua:ion fields have that horizontal wave number which maximizes the heat

jtransport. However,‘the heat transport found here for free-boundary
conditions is three times the experimental value for rigid-boundary
conditions. Preliminary numerical studies of the rigid-boundary problem
indicate that for large Rayleigh numbers (Re'lO ) the heat transport is i
i about a factor of 2.3 smaller than that for free-boundaries and thereforeﬁ
approximately 50 percent higher than the experiment. Thus, it appears-
that the boundary conditions are quite important in producing the

experimental heat transport. The system has two additional failings:

it turns out that the fluctuating amplitudes are steady in time and thei:}

horizontal plan form of the motions is indeterminate.

The mean temperature gradient at low R closely resembles the

- exXperimental temperature profiles. At large Rayleigh numbers

(R ~ 106), the gross features of the temperature profiles are

L 1] i % Y

correctly predicted by our system. The computed mean temperature

'grad*ents are large in a thln la;er adjacent to boundary and are

l‘.,I'
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quite small in the body of the fluid. The gradients near the
boundary can become negative for motions of large horizontal
scale, but remain positive for motions of a sufficiently spall
horizontal scale. ’

The stability of the steady state solutions against
infinitesimal perturbation at other horizbntal wave numbers 1is
also investigated and the regions of instability are delineatoed:
These results closely parallel perturbation results at low
Réylgigh number and support the idea that the most stable solutioi:
is near the one transporting the most heat flux (Malkus and Veronis,
1958). A finite amplitude stability studf, and the associated
development of a severa1eﬁorizontal-wave—number system to steady

state will be the topic¢ of a future investigation.

The idea that the important features of the conwe ction

_problem are contained in the system which omnits the fluctuating

self-interactions is implicit in the theory of convection advanced
by Malkus (1954). In the original formulation of his theory,
Malkus sought a maximum for the heat transport subject to the
constraint'that the temperature gradieht be positive, and that’
there be a smallest scale of motion participating in the advective

heat transport. The smallest scale is supposed to be determined

+ by the requirement that it be marginally stable in the presence

" of the mean temperature gradient occuring in the fluid. The

smallest scale so determined furnishaed a cut off in the .cosine

representation of the mean temperature gradient. The assumption

-that the heat transport was maximum under the above constraints

then led to an explicit form for the temperature gradient.

.
~
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A more recent formulation of the Malkus theory by Spiegel (1962)
replaces the cbsine representation of the temperature gradient
by an expansion in terms of the set of eigenfunctions, which
are marginally stable on the mean temperature gradient. This
version of the Malkus theory is exactly equivalent to the
system considered here, provided the horizontal scale of thc
motions is such that the mean temperature gradient is everywhere
positive. In this sense, our numerical results contain, as a K]
special case, the exact solutions to the Malkus theory for one
horizontal wave number and free boundaries.

In this connection, a comparison of our computed temperature
gradients with the predictions of the Malkus theory is relevant.
In making this comparison, we must keep in mind that the systcm
considered here is explicitly confined to only one horizontal
wave number, whereas Malkus makes ro explicit references to the
nature of the horizontal—wave~number spectrum. We do not confirm
thé zm2 law for the gradient outside the boundary layer as
prediﬁted by Malkus, nor do we find aléharp cut off in the cosine
srpectrum of the temperature gradients.

At low Rayleigh numbers (R< 2000) our numerical results

" are in agreement with the calculations of Malkus and Veroni:d (1958)

and Kuo (1961), who have obtained perturbation solutions to the
convection equations. A procedure similar to ours has been used
by Saltzman (1961) in studying the complete convection eguations
for R < 6000. oOur approach differs from his in that we

are able to allow very many vertical modes to be excited,



whereas his results are limited to one vertical mode. Our
results indicate that it is essential to allow many more vertical
modes than horizontal modes, if large truncation errors are to
be avoided. Thus, at R = 4000, 10 vertical modes must be

included to obtain realistic temperature profiles.

II. Theory

a) The Equation of Motion and Boundary Conditions

We consider a thin layer of fluid confined between two
infinitely conducting plates located at z = 0 and z = d. The
lower piate is maintained at zero degrees, and the top plate
at a temperature —To, on an arbitrary temperature scale. The
direction of gravity is specified by the unit vector —i. The
equatiéns appropriate for our system are the Boussinesq
approx;i.mations2 to the Navier-Stokes equagions. We shall write
these équations in a form in which the velocity and temperature
(v and T) as well as the coordinate and time (r and t) are
nondimensional. The only parameters entering the equationﬁs
are then the Rayleigh number, R, and the Prandtl number, nfé

The equations are

Jev = 0 (1)
l' a - 1 — — ™ -
& o - 72 2y = = .
&n = 2 ) 72y - 7x(7x(v 7v) + R7x(7xkT) (2)

&%t - 72) T = - 7-(¥T) . (3)
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Equation {2) is actually the double curl of the momentum equation,
‘and hence the pressure variable is absent. The nondimensional
variablés are related to the dimensional ones (denoted by primes)
in the following way:

v=935,
T 3 T =T'/d
r=7r'/d
£ =2 ¢t S

‘Here n is the thermometric diffusivity of the fluid.

The boundary conditions on the velocity field are derived from
the requirement that the fluid exert no shear on the confining plates.
This, together with the continuity equation, implies that all even
derivacives of the verticalrvelocity, w, vanish on the boundary. In
the nondimensional notaﬁion the boundary conditions are, .

=2

am’
- o = = ‘
?Eﬁm w(0,t) = A zom w(l,t) 0, m 0, 1, 2, ... (4
and .
T(0,t) = 0; CT(l,t) = -1 _ (5)

b) Discard of the Fluctuating Self-Interactions

It is convenient to resolve the temperature field into a

horizontal mean plus a fludtuating part;
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T = -z + ¥(z,t) + 8(T,t) . (6)

Here, ¥(z,t) 1s a horizontally averaged distortion or the conduction
state and O(T,t) is the fluctuation of the temperature from its
distorted value. 1In view of the boundary condition (5), and the 

' interpretation of 8 as a fluctuation from the horizontal mean, we.
may write. | |

¥(0,t) = ¥(l,t) = 0 (7)

w(x,y,0,t) = @(x;y,l,t) =0 =0 . (8)

The bar on equation (8) indicates an average over the horizontal.
We now introduce equation (6) into equations (1), (2) and (3) and
subtract from each of the resulting equations their respective

- horizontal mean. We find

(% it - vz) V2w = RY,20 + % {vax(?-vs)}z
3 -v)e=(1- %%) w- v . (VO - ki)

. . o
Ge - %Ea) IR Tl

There are two more equations, for the x and y components of the

velozity field, but these are.not necessary for our problem. The

last terms in the equations above for w énd ® have the form of a

deviation.of a bilinear fluctuating quantity from its horizontal mean

(fluctuating self-interaction). By discarding these terms we obtain

the system to be investigated;



(G2-v)wuzwse (9
%E-'V=>®=BW 7 (10)

BN, L — '
(%'E = %22/ ¢V = = % wo ’ (11)

: M = _ﬂ—_
'where. g(z) 1 32 =

-

{
The significance of omitting fluctuating self=dinteraction can

be expressed formally by examining the hierarchy of moment eduations
obtained from equations (1)-(3). By multiplying equations (2) and
(3) by v(t') and T(t') and ensemble-averaging the appropriate sums

of the resulting equations, we obtain the time evolution equations
for the correlation coefficilents <vivj'>, and <viT'>, and <T T'>.
These equations couple the above second order moments to the transfer
terms, which are cubic in Vv and T.

Since the system contains a non-vanishing first-order moment,
¢, the transfer terms contain both correlated third-order moments
(cumulants) and products of first order moments with second-order
moments. The discarding of the fluctuating self-interaction then
corresponds to closing the system of moment equations by discarding
the third order cumulants-3 In the absence of mean fields this
procedure would be empty.

We must now verify that our précedure of deleting third-ovrder

cumulants does not lead to physically unrealistic results. For our

procedure to be acceptable, the system of equations (9)2 (10) and (11)
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must obey the conservation laws associated with the complete‘sét
of coavection equations, and they must be free from unphysical conse-
quences of the sort receﬁtly discussed by Ogura (1962), for a similar
problem in isotrdpic turbulence. Ogura has demonstrated that the
assumption of zero forth-order cumulants and nonzero third-order
cumulants is incompatible with a positive energy spectrum for all
wave numBers.

With regard to the lést point, it should be noted that the
positive definite character of the kinetic energy wave number spectrum
and the spectrum for the square of the temperature field folléws
directly from the fact that it is possible to write the equations
which delete third order cumulants in terms of amplitudes rather than
momeﬁts. We observe that the amplitude equations (9), (10) and (11)
all have real coefficients; hence, the square of any amplitude will
remain positive for all time if the amplitude is initially a real
number,

The conservation of entropy and kinetic energy are also
preserved without the flﬁétuating self-interactions. By multiplying
equation (10) by ©®, equation (11) by ¥, and adding, we obtain after
integrating over the entire volume of the fluid, .the equation of

conservation of entropy,

T

Z3Edlel S lrh qlwle v lvelep s el . (2
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Here the v subscript indicates an integration over the entire volume

of tha systém.
We observe that equation (12), with a correspounding one for

the conservation of the kinetic energy > of the flow are exactly
the sama as those with the fluctuating self-interaction included.

Contributions from the latter may be reduced to surface integrals
which vanish.

C) Fourier Decomposition_of the Equations

It is convenient to work with the Fourier components of the

equations (9)-(1l) rather than their space-variable form. The
free boundary conditions make the sine series appropriate. We
therefore write:
w(r,t) = Z fa(x,y) wnOL sinnnz
n,a
- N . o .
a(r,t) = Z‘ fa(X,y) e, sinnmz
n,o
{ 2 4 -
y(z,t) = Z’ 4, sinnmz
' n
A

Here fa(x,y) is am arbitrary set of orthonormal functions generated
by the operator 7,2, and obeying appropriate periodic boundary

conditions in the horizontal:

7,2£ (%) = - ma?f (x,¥)
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Introducing the above representation into equations (9), (10),

and (11) gives the following set of equations for the amplitudes

W 605 and bpt

Lo 2 2> a_ _Aa® a .
cor W T )= e Oy : (1)

> 2 3\ g @ - a ot . a _ a
ST D ta > B, = Wy 2_2‘,pmp Cwn+p + a(n-p) w ]n-p‘) (14)
p=1
2 N O p-n) a%
57 * ) g = 3 L% (% nsp *+ olp-m) @ ‘n-pl> (13)
p=1 a '
where
f A = R/m*
‘ T =mt
i}
wn—wn/'ﬂ'z
and
o(x) =1, x>0 , Yy
=0, x=0
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Manipulation of the convolution terms in (14) and (15) is aided

by the following identities:
Y A (B + o(n-p)B . o)) = % By (A np] ~ Anap)

and,

ZAP(BI‘H' + o(p- n)B|p nl) Z B. (A + O(P‘n)A|p_nl)

There are two conservation equations dérivable from (14) and
(15). The first is the Fourier representation of equationA(lZ) for
conservation of entropy. The other is the equation that partitions
the totéi?heat flux between conduction and convection; and it is

derived by multiplying equation (15) by 1/n and summing over n.

. We find

}
{ ’

(5 2 +1)a, = e A (16)
n,q

where ' : ' .

R

Here the g s are the cosine transform of the mean temperature
gradient. In the statistically steady state, equatlon (16) is the
equation for the total heat flux, which is a constant of motion for‘
the system. We‘now introduce a quantity N(t), the total heat flu#

at the lower boundary:
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SN =1+ ) g (0) (17)

{18

et

i | .

'
1
H
i
t
!
'

If the mean amplitudes are constant,

a .«
Wy €y
n,a K;ﬂ

>~

_ 2
N—1+-2-—

In our units, the conduction state transports unit heat flux and

this equation is the nondimensional form for the familiar equation

2 - for the total heat flux.

d. Structure of the Equation

Before proceeding to the numerical results, we give a bricf
7 resume of tﬁe'pertinent qualitative features:of the system defined
i . by equations (13), (14) and (15). First of all, we note that the

horizontal wave numbers, &, are coupled only in their effect on the

mean temperature field y. This interaction occurs diagonally in the
“~.. sense that each @ -interacts only with itself. As a consequence

there is a degeneracy in the horizontal plan form of the motion;

. the system is insensitive to the particular cell shape. Moreover,

' the number of o's is also indeterminate. The simplest situation

is to have a single o« support the motion and we investigate only
this case here.
' .- A single g will give nontrivial answers for the amplitudes

w and @ only if it lies within a certain range. The range of «

which will pot support convection is obtained by assuming w and @

PR
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to be small, and demanding that they subsequently decay. 1If
w and ® are small, ¢ will be small to second order and our question
is equivalent to that of marginal stability'.6 The system then will

not support convection if ' -

(1 +a2)3_ R |
oz Z : (18)

Consersely, we assume that the steady state values of w and ® will
be nonzero if a lies in the range complementary to (18).

The time behavior of the system is complicated by nonlinear
effects. 1In the approach to the steady state, our numerical results
indicate that the system executes overdamped oscillations with an
ever increasing period of oscillation. This last remark is
understandable since w.and @ become marginally stable as t - .

If’the mean field, ¢, is statistically steady as t - », we
ﬁzy use a theorem of Spiegel 7'to show that w and @ are independent
of time. Spiegel has shown that the principle of exchange of stability
is valid (for free boundaries) in the presence of the mean girudient
corresponding to the steady state solution to the mean temperature field
given by (15). This implies that the growth rates for the appropriate

eigen-function expansion for w and ® must all be zero in order for

there to be a statistically steady state.

III Numerical Procedure

In performing the numerical integration, we discard from the

onset those Fourier amplitudes which will be zero in the steady state.

3
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We éssdme that the steady state amplitudes w, ®, and g8 have even
parity about the mid point z = 1/2. This means that the even sine
roues of m and @, and the odd cosine modes of g will have zero
amplitude in the steady state. We therefore put their initial
values equal to zero. The equations of motion (13), (1l4) and (15;
then imply that the odd parity modes will remain zero for all
subsequent time. Defining ﬁn = 8,,, we may rewrite (14) and (15)

in a more convenient form:

9 2 2> Y ;= _]:_ iy '
(7 + 02+ 0? )@, =u +7 }: ep(wn+2p + a(n-2p)wln_2p|) (14')
p=1

‘

+ o(p-2n) @12n-p1) ~(15")

Zn-p

S. 2VE = . 2 ) o
(_aT + 4n® ) R 2r? n? }1 wp(c
p:

Here, we have dropped the o superscript since we are interested
in the system gontaining only one a. Equation (13) remains
ﬁnchanged and the total heat flux is computed from equation (17).
Our brécedure for integrating these equations is to assign
an initial set of amplitudes to w_, @, E%, and allow the system
to evolve to the steady state. In doing so, we must truncate
the infinite set of equations. Our procedure in this matter is
to set all amplitudes ®.s O, E; of index greater than a certain
integer, n_, equal to zero. This method of truncation guarantees
exact conservation of heat flux and entropy for the abbreviated
system. Since m, is generally large and the @n's decrease rather

slowly, we see from (15') that amplitudes for En above n,/2 will
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have significant truncation errors. Truncation errors are assumad
to be ﬁegligible if increasing n, does not appreciably alter the
_'value of the total heat transport The total humber of {, modes
(included in these calculations rangced from 20.modes at R = 4000 to
80 modes at R = 108. The errors in the total heat transport due to
:
the above are estimated to be less than one part in 10°
The integration forward in time was continued until constancy
of heat flux (16) and entropy (12) was achieved to one part in 10".
The time, in 7 units, necessary to achieve this ran from ~ 1.4 at
R = 4x10® to 0.3 at R = 108. At high Rayleigh numbers, this
criterion was not too satisfactory, since constancy of heat flux and
entropy were achieved long before the amplitudes w and @ became
steady. For these cases, it was necessary to check the time derivatives

of the slowest evolving amplitudes, w, and @, . The system was

1
observed to be steady if the derivative of w, was less than 2 percent
of w,.

Examples of the time evolution for the total heat transport
N(t) are given in Figure 1, for R = 4x102, 104, 10° and g = 1.5.
The system was started in the conduction state at 7 = 0, with all
fluctuating amplitudeé wy and 9, equal to zero, except w,, which
had an initial value of unity. The convection is seen to develop
initially by way of large oscillations, and to decay to the steady
state with overdamped oscillations, whose period becomes increasingly

larger. The time scale of the initial oscillations in these curves

is of the order of the growth rate time - in the conduction state.

o
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IV Discussion of Results

The computed steady state ampiitudes are shown in figures 2-13.

The normalization for B; w, and @ are given in the captions, while

T{z) requires no normalization. The graphs of T(z) are in a
reflected coordinate system to conform with an accepted proccdure.
The values of a in figures 2-9 were chosen so that the heat
transport is wery near its maximum. We now discuss in some detail

the physical features of the steady state amplitudes ©, @,‘ﬁ, and T.

a) The Mean Temperature T, and Mean Gradient 8 (z)

The mean fields, T and B in figures 3, 5, 7, 9, 11 and 13
have an interesting behavior near the boundaries. At low Rayleigh
number, these fields closely resemble the perturbation results of
Malkus and Veronis (1958), but the temperature gradient is slightly
negative in the central region. AS the Rayleigh number is increased,
the negative temperature region collects closer to the boundary
while in the central region, the temperature gradient becomes
extremely small but positive.

The negative temperature gradient boundary region is apparently
produced by an overshoot pheonomenon. These occur typically for
motions of large horizontal scale (small o) and disappear for
motion of small horizontal scale. (See figures 9, 1l and 13.) If
the motion has a large horizontal scale, an element of fluid close
to the lower plate moves in a region of high temperature for a

relatively long time. When it eventually turns upward, it moves
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unchecked by eddy processes and penctrates the body of the fluid

with an excessive heat flux. The mean gradient accommodates this

motion by turning negative. The negative & region thén checks
the velocity field, so that the advecfive heat transport decreasecs
towerd the middle of the fluid. We see here evidence for the
non-local property of the flow; if the Rayleigh criteria for
convection were applicable locally, a negative /& region would not
persist in the steady state. ' |
For motions of small h. rizontal .._.aie (figures 11 and 13 )
the sltuation is somewhat d:. fferent. 1In this case, an element
absorbs little heat from th. ‘ower boundary region and loses ?t'
quickly 5y conduction becausc it belongs to a vertically elongated
cell pattern. It also loses mcentum by viscous drag, and attains
its terminal velocity before reaching the central region of the
fluid (see figures lOrand 12) . To maintain constancy of heat flux
the cenfral region must conduct rathar strongly, so that the

mean gradient becomes large there.

b) Velocity and Temperature Fluctuations "

The velocity and temperature fluctuation fields are shown
in figures 2, 4, 6, 8, 10 andv12. We observe that the velocity
fields, for all Rayleigh numbers, have an extremely lafge first
mode. For example, at R = 4000, (figure 2) w, represents 999 of
the total velocity amplitude, while at R = 10° (figure 8) w, is
95% of the total. On the other hand, tﬁe I modes decrease rathev

s
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slowly as n increases.

Thé above behavior of the w, and @n spectra displays the
character of the nonlinear coupling in our system. Thus, the Lerm
tend to be the dominant contributor to En [see equation (15") ]

W8 n-1

for reasonably small n. Conversely, terms of the form gnwl and B,_1%;

"tend to be the dominant contributors to 8. [equation (14')]. The

nonlinear coupling scheme in the equations of motion is therefore
highly nondiagonal, as opposed to the case of isotropic turbulence.

Thé stréng nondiagonal coupling in the system of Fourier nmodes

is a result of the distortion of the mean temperature profile com-

"bired with the pressure and dissipative forces for incompressible

flow. ;The above forces are directly respoﬁsible for the occurrence
of sixfh—order derivatives in the marginal stability problem, of
which the steady state amplitudes w and ® are solutions in the
presence of the mean field 8. If we solve for the velocit: "yuondes
Wp in the presence of the mean gradient B, by using the iteration
technique of Section V, we'see that the higher modes of w, are
suppressed by a factor ~n~®. For a reasonable B, this fac@or

results in the higher w, modes making only a small contribution to w.

c¢) Temperature Gradient Spectrum

The cosine spectrum of the mean temperature gradient, B, :.s

4 5 6

given in figure 14 for R = 10, 107, 10~ and a = 1.5. We have

connected the points with a smooth curve for the sake of clarity.
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We notice a tendency for the lower modes to saturate at 8, = 2,

which corresponds to the small grad{ent outside the boundary layer.

In fact, if r = 2 for all n, e(z) 1is a & function, and the gradient

vanishes everywhere except at the boundary, where it becomes slingular.

At large Rayleigh numbers, the B spectrum- is nearly Gaussian

. for small n, but decreases more rapidly at large n.

Thé tendency for the En's (for small n) to approach 2 as an

‘upper bbund is closely connected with the fact that the velocity

field i? marginally stable on the mean temperature gradient, R.
This féature is brought out more'clearly by examining the relation
connecting the mean gradient field, Fn and the Rayleigh number R.

Using the iteration method of Section V, we find

(1 + a®)3 = _
oD v o2 Te (8n - Bnel’

o
I

(L+02)3n4 _ 1< 1/4
< R -7t TR

-+

=~ 8

This series foxr R'l converges rather rapidly for all the Fﬁ_
which have been computedjand the terms explicitly written in

equation (19) give R to an accuracy of £ 207 at R = 10°. We

note that for this equation to balance at large R, 31 mus & approach

2, and the remaining lower modes must decrease rather slowly as .
n increases.

The computed spectra (figure 14) are qualitatively quite

...(19)

. L. 8. '
different from the one derived by Ma ku&. ~° 'His spectrum is given by
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Here 2nﬁ;1 is a cut-off in the Fn spectrum, and it is the total
heat flu< in our units. PNarginal stability is achieved at a much
lower Raylelgh number for this spectrum than for the ones computed
here.

' With regard to the Malkus theory, figures 10 and 11 are rclevant.
6

. For this case (R = 10°, a = 6.0) the temperature gradient is_

everywhere positive except near the boundaries where 1t approacaus
zero, The fields in figures 10 and 11 therefore fulfill all the
requirements of the Malkus theory as formulated by Spiegel (1962). We
note for this case that the total heat flux is ~ 22, whereas talkus
obtains a heat transport of ~ 1l for free boundaries. In making
this‘comparison, one should femember that these computations were
made for a single horizontal wave number, whereas the Maikus
presumably allowed for a full spectrur of ¢'s. However, if we
interpret the computed heat transport as an upper bound to the

heat transport as the Malkus theory prescribes, we conclude that

for free boundaries the actual upper bound is at least a factor of

two larger than that obtained by Malkus.

d) The Total Heat Transport as a Function of a and R

The total heat transport, as a function of R and ¢ is given
in figure 15. The Rayleigh numbers are indicated in the figure.

These curves closely resemble the perturbation calculations at

. small R, but become increasingly broadened as the Reyleigh number

increases. For a given R, the heat transport is entirely conductive



(N = 1);if o lies outside the bounds prescribed by equation (18).

The valpe of & which maximizes the heat transport is 1/{5‘ at the
P critica} Rayleigh number (R = 657), and apparently increases

lincarly in Ri/a, at large R. It is well represented at high

Rayleigh numbers by the formula:

o .~ 0.7+ 0.0l r1/3 x,
The dafa on this point is not entirely conclusive because of the
large breadth of the curves. It should be pointed out that
equstion (20) cannot be a correct asymptotic formula since dmax

is proportional to Rl/3 and the value of « beyond which a single. a
cannot support convection is proportional to Rl/a(equation 18). % an
estimate of the Rayleigh number beyond which (20) is incorrect is

! " not warranted by the accuracy of the curves, but according to
2! | equétions (18) and (20), it is R < 1018.‘ | |

The maximum heat transport as a function of R is glven in
figure 16, For R z 3000 the data is accurately represented by

;! -~ the following R1/3 1aw:
S - N ¥ 0.31 rY/3 (21)

Experimentally, the Nusselt number N is ~ 0.085 RL/3, for large

R, and rigid boundaries (Jakob, 1959). We see no evidence for an
intermediate Rl/4 law, but such a law may only be obtained in the
e . rigid boundary problem. Below R ~ 193, the data fits smoothly to tLhe

B : perturbation calculation of Malkus and Veronis (1958) .



The discrepancy between (21) and the experiment 1s pariiy
a result of eddy processes which our prccedure omits. The usc of

rigid boundary conditions may improve the agreement, but if (21) is
corrected for boundary effects as done by Malkus (1960) by decreasing
N by (?%37/ 1/3, there remains a discrepancy of a factor of 2. |

1f we choose horizontal wave numbers such that the mean gradicnt‘

is everywhere positive (figures 10 and 11) the discrepancy is

reduced to 1.8. The latter fields, however, have the unattractive

feature of having a large temperature gradient in the central

region of the fluid.

V Linear_Stability of the Fielils

The velocity and temperature fi:lds we have so far discussed
are stable against the introduction of a disturbance of the sare
horizontal wave number for which-the'fields were computed. This
stability 1is inherent in the method of integrating the equations.
The stability of the steady state amplitudes against disturbancces
aﬁ wave numbers o' other than that o which supports the convectién
proc:ass Has not yet. been assured in our calculations. The question
‘of s:zability of the -solutions against disturbances of finite
amplxtﬁdes leads directly back to the multi-a system of
equations (13), (l4) and (iS). We should assume a whole spéctrum
of q;s are initially excited, let them evolve to steady>state, and
repeat the calculation for an ensemble of initial conditions. We
shali be content here with an investigation of the linear stabillity

of the system. This problem has some intrinsic interest, but our
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main purpose is to lay the framework for an investigation of the

rmulzi-c system.
It is convenient to pose the linear stability problem in
terms of the Fourier amplitudes (equations (13), (14) and (15)).

We suppose that the system w al, @nal, and Bn have their steady

n
staﬁé values, introduce disturbances 6mna, é@n and 58, and aslk
_vhether the latter grows or decays. Since a, and a are not coupled,
6Rn must decay initially. The problem then is reduced to determining
the growth rates for‘&wnOL and é@na in the presence of the mean
gradient 8 Since exchange of stabilities has been proved for

, this‘systemlo, we know that the system w al, ®na1, and g, will Dbe

n
! stable if the smallest critical Rayleigh number R, for the
perturbgtion system, éwan, 6@an is larger than the Rayleigh number
»for which w*1 and ®%1 were computed.

The marginally stable amplitude 5wna, and 6®an satisfy
equations (13) and (15) at a Rayleigh number R, with the time
deriva;ives put equal to zero. Since the smallest R, takes an
eigen function even about z = 1/2, we may abbreviate the

perturbation system by eliminating the even sine modes from the

velcecity and temperature fluctuations. Defining

S o = 0Wp g

Bn an >

we may eliminate 6@ by using the steady state form of equation (13)



and write the marginally stability problem in the following maktrix form:,
A(R) © = o (22)

-where

._ _ a2 l _ — ’
AR = T yE R T {6nm * 3 (R gi- Pn+m—1)}

In writing the matrix A, we have used the alternative form for the

convolution term in equation (14).

. The largest eigen value, F_(smallest RC), of equation (22) may

be obtained by the matrix iteration technique (Hildebrand, 1952). Since

the first sine mode of the velocity will be largest, we may conveniently

begin the iteration on a vector contsining only this mode.  Def.ning
1> = (1, 0, 0, ..., 0, «..)

we may write

T4 . <1{A")1> |
=y = lin —_— (23)
Rcfa) max <1iAn'l1l> .

The convergence of the iteration scteme is quite rapid because of

the structure of the A matrix. At the highest Rayleigh number

: 6
considered, R = 106, the 11Lh iteration gives RC to one part in 10°.



The calculated Rc(n)‘s are shown in figure 17 for R = leOS.

The particular o which supports the mean field, R, labels the
various curves. At low Rayleigh numbers, (R < 5.103) these curves
closely resemble those produced by perturbation calculations.
Above R ~ 105 they become increasingly distorted; steady state
amplitudes of small horizontal wave numbers are enormously unstable
with reépect to an introduction of a disturbance at large a.

In figures (18) and-(l9) we give the zones of instability
for the computed amplitudes for R = lO4 and R = 5x105. In these
graphs, a, 1s the wave number that supports the convective process,
and o, is the wave number of the perturbation amplitudes. The
regions of instability are indicated by the shaded areas, whoze
outer boundaries are lines of marginal stability. The line «, = q,
is a trivial case of marginal stability. The value of a at which
the two curves cross represents a solution which is infinitessimally
stable against all other a's. This value of a begins at I/VE
at the critical Rayleigh number and increases slowly with increasing
R. The rate of increase is seen to be slower than that « which ’
maximizes the total heat transport. Referring to figure (15) we

see that the use of the most stable g instead of O max will not

Qaporeciably change the total heat transport.

The zones which linear stability theory predict must have £ wo
or more a's suéporting convection are indicated by the cross-hatched
regions in figures (18) and (19). These regions are obtained by

perturbing the a, fields at a,, assuming that the ¢, field



subsequently dominates the convection, and then demanding that
the 09 fields be unstable with respect to a perturbation at oy .
The cross-hatched region is then bounded by the descending mar-
ginally stable curve and its reflection about the 45° line. At
small Rayleigh number, R < 4x103, this area vanishes but it
gradually increases with Rayleigh number.

Concluding Remarks

The temperature and velocity fields computed here with
the fluctuating self-interactions absent show qualitatively a
reasonable behavior. The boundary-layering of the temperature
field, which is found experimentally, is faithfully reproduced by
the system, and the heat transport has the experimentally determined
dependence on Rayleigh number. In this respect, our results for the
velocity and temperature amplitudes, as well as the stability analysis
of the fields, confirm the original ideas of Malkus. However, our
result for the heat transport for free boundary conditions does not
agree quantitatively with Malkus.

' The only disquieting features of the results are the
negativeftemperature gradients which can occur near the boundarvy for
small o,tand the rather large amount of heat transported by the
system. - Aside from eddy processes, chere are two other modifications
in tae system which must be explored before its quantitative accuracy,

can ce properly accessed.

First, the use of the more realistic rigid boundary conditions

will enable one to examine quantitatively the role of the e«.] roccsses

in producing the experimental temperature profile and the total heat

flux. The presence of shear forces at the boundary will decrease the
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computed heat flux, and in checking the development of large scale
horizontal motions there, it will reduce the negative temperature
gracient. Preliminary indications e&re that the use of rigid-
bourdary conditions decrease the total heat transport by a

factor of 2.3. Secondly, the introduction of several horizontal
wave numbers will make the system more realistic, particularly

at large Rayleigh numbers. It will also permit a study of finite
amplitude stability of the system. The above modifications are
currently under investigation and will be reported on in the near

future.
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FOOTNOT =8

FFor a discussion of the Prandtl number dependence of the heat

“transport for the complete system see Kraichnan, R. H., 1962:

Turbulent Thermal Convection at Arbitrary Prandtl Number.

Physics of Fluids 5 1374-1389.

See €.9-. Chandrasekhar, S., 1961: Hydrodynamic and Hydro-
magnetic Stability. Oxford at the Clarendon Press, p. 16.
Discarding third order cumulants is guite different from dis-
carding third order moments. The latter procedure has as a
consequence that no steady state nontrivial amplitudes exist.
For an 'investigation of the dynamics of decay for zero third-
order moments see Deisslér, R. G., 1962: Turbulence in the
Presence of a Vertical Body Force znd Temperature Gradient,

J. Geophys. Research, 67, 3049-306z.

For a complete discussion of the cumnulant discard approximations
see Kraichnan, R. H., 1962. The Closure Problem of Turbulence
Theory, Proceedings of Symposia in Applied Mathematics, Vol. 13,
Hydrodynamic Instability, American Mathematical Society, 199-225.
See Malkus and Veronis, loc. cit., p. 228 for a complete dis-
cussion of the conservation equations.

See Chandrasekhar, loc. cit., p. 35.

Spiegel, loc. cit., p. 196.
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Malkus, loc. cit., p. 200.

This fact has the consequence tha: the heat transport, N .
o . . 3/10 .

is asymptotically proportional to R . R. H. Kraichnan,

private communication.

S»iegel, loc. cit. p. 196.

X
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Captions

Figure 1. Time development of the total heat flux, N(T) for

R = 4x103, 104, 105 and & - 1.5. The system is in the conduction

state at 7= 0, with all fluctuating amplitudes except Wy

equal to zero.

-2

Pigure 2. 4.22x107%w and 4.076 for R = 4x10° and &= 0.8.

Fiqure 3(a)} Mean Temperature, f(z), for R = 4xlO3 and a= 0.8.

Figqure 3(b) Mean gradient, 8(z), for R = 4x10° and G = 0.8.

B (z) is normalized by the total heat transport, N = 3.92.
Figure 4. 2.05x10—2w and 5.168 for R = lO4 and « =1.0.

Figure 5(a) Mean Temperature, T(z), for R = 10% and a= 1.0.

Figqure 5(b) Mean gradient, B(z), for R = 10% and a= 1.0.

5{z) is normalized by the total heat transport, N = 5.82.

Figure 6. 4.33x10 3w and 9.428 for R = 105 and a- 1.5.

— 5
Figure 7(a) Mean Temperature, T(z), for R = 107 and &= 1.5.

o)
Figure 7(b) Mean gradient, 8(z), for R = 10 and a= 1.5.

8(z) is normalized by the total heat transport, N = 13.82.
-4
Figure 8. 8.98x10 “w and 19.40 f£or R = 10° and & = 1.5.

Ficure 9(a) Mean Temperature, T(z), for R = 10% and a= 1.5.

Figure 9(b) Mean gradient, 8(z), .or R = 4xlO6 and a= 1.5.

B (z) is normalized by the total heat transport N = 31.48.
6
gqgg_lo. 3.22x10 3w and 8. 570 for R = 10 and a = 6.0.

Figure 1ll(a) Mean temperature, T(z), for R = 106 and ¢ = 6.0.

Ficqure 11(b) Mean gradient, B (z), for R = 106 and a = 6.0.

-

B(z) is normalized by the total heat transport, N .= 22.3.



Figpure 12. 1.06x10~2w and 12.98% for R = 106 and @« = 9.0.

Figure ‘'13(a) Mean temperature, T(z), for R = 10% ana a = 9.0.
O6

and g = 9.0.

FigggeVIB(b) Mean gradient, g(z), for R =1
8(z) is normalized by the total heat transport, N = 5.40.

Figure l4. Cosine spectrum of the mean temperature gradient for
4 5 6

R=10", 107, 10" and a = 1.5.

Figure 15. The total heat transport N as a function of a fr

R = 4x10°, 10%, 10°, 5x10° and 10°.
Ficure 16. Maximum total heat transport, N oy @5 a function of
RV

Figure 17. Critical Rayleigh number R  for R = 5x105 as a

function a. The value of a which supports the mean temperature fields

labels the various curves.

4

Figure 18. - Stability diagram for R = 107, a, is the wave number

that supports convection, and a, is the wave number at which a
small perturbation is introduced. The shaded region indicates

instability.

o

Figure 19. Stability diagram for R = 5x10°. a, is the wave

number that supports convection, &énd a, is the wave number at

which a small perturbation is introduced. The shaded regions

irdicate instability.
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